Clase 6

Internetworking e IP

Tema 3.- Interconexión de redes IP

Dr. Daniel Morató Redes de Ordenadores Ingeniero Técnico de Telecomunicación Especialidad en Sonido e Imagen, 3º curso

Temario

- 1.- Introducción
- 2.- Nivel de enlace en LANs
- 3.- Interconexión de redes IP
- 4.- Enrutamiento con IP
- 5.- Nivel de transporte en Internet
- 6.- Nivel de aplicación en Internet
- 7.- Ampliación de temas

Temario

- 1.- Introducción
- 2.- Nivel de enlace en LANs

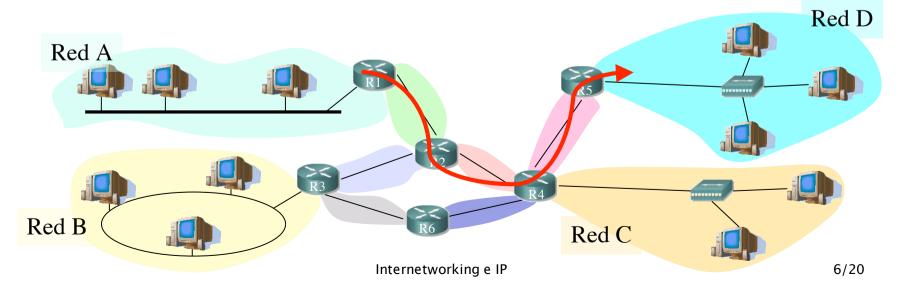
3.- Interconexión de redes IP

- Internetworking e IP
- Direccionamiento clásico
- CIDR
- Comunicación IP en LAN (ARP)
- Fragmentación y reensamblado. ICMP
- 4.- Enrutamiento con IP
- 5.- Nivel de transporte en Internet
- 6.- Nivel de aplicación en Internet
- 7.- Ampliación de temas

Objetivo

Conceptos básicos del nivel de red

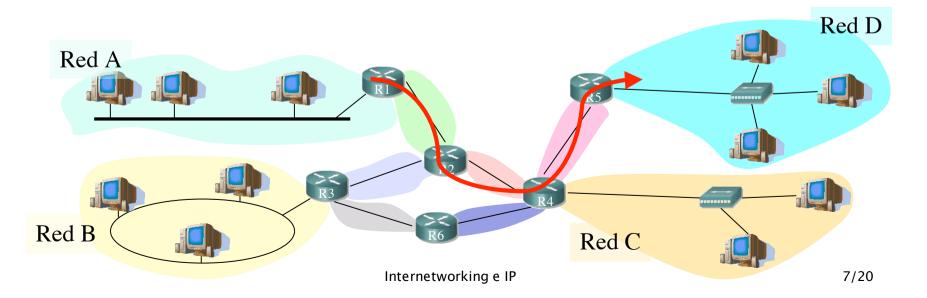
Contenido


- Introducción
- Internet Protocol
 - Carácterísticas
 - Routing y forwarding
 - Formato del paquete IP

Nivel de red

- Objetivo:
 - Llevar paquetes del origen al destino
 - Usar los enlaces de forma "eficiente"
- Direccionamiento:
 - Que permita identificar a los nodos
 - Tiene una estructura (no es plano)
 - Ésta reduce la información en los routers
- Enrutamiento
 - Elementos de encaminamiento deben "aprender" cómo es la red
 - Deben cacular "buenos" caminos a los destinos
 - Esto se almacena en las "tablas de rutas"

Routing


- "Ruta" es un camino (path) ⇒ acíclico (…)
- "Routing" = proceso de calcular los caminos que deben seguir los paquetes
- Se pueden calcular en función de:
 - Flujo
 - Tipo de tráfico
 - (origen, destino)
 - Destino

Conmutación

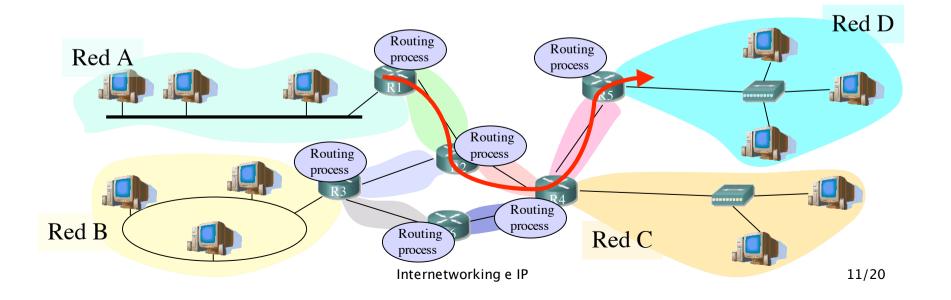
- Reenviar los bits por el camino
- Servicios posibles
 - Circuitos (telefonía, longitud de onda)
 - Paquetes
 - Circuitos virtuales (...)
 Datagramas (...)

 Cada paquete del mismo flujo sigue la misma ruta
 - Cada paquete es conmutado independientemente

Contenido

- Introducción
- Internet Protocol
 - Carácterísticas
 - Routing y forwarding
 - Formato del paquete IP

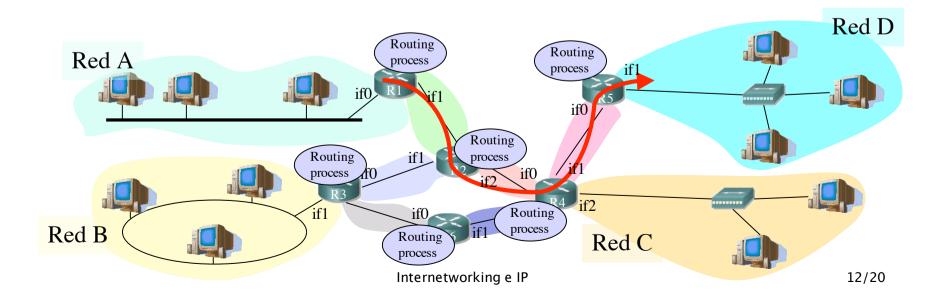
Características de IP


- Nivel de red
- Servicio de datagramas, sin conexión
- Routing en función de la dirección destino
- No fiable
- Best effort
- Provee:
 - Independencia de las tecnologías de cada red
 - Direccionamiento global
 - **OTOS**
 - Fragmentación y reensamblado

Otros aspectos

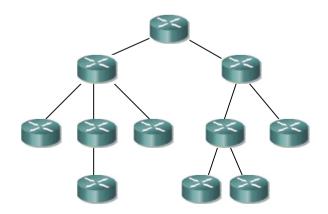
- Direccionamiento
 - Nivel 2: local, plano ⇒ no escalable
 - Nivel 3: según lugar, jerárquico ⇒ escalable
 - Direcciones temporales
 - Network Address Translation para reducir direcciones
- Routing
 - Basado en la dirección destino
 - La red se descompone en dominios
 - Routing interdomain : algoritmo path-vector
 - Routing intradomain: link state o distance vector
- Más
 - Multicast; Ad-hoc; P2P; Sensores, etc

Routing en IP


- Llevado a cabo por un **proceso** que se ejecuta en cada router (cálculo distribuido) (...)
- Resultado: una "tabla de rutas" en cada router (...)

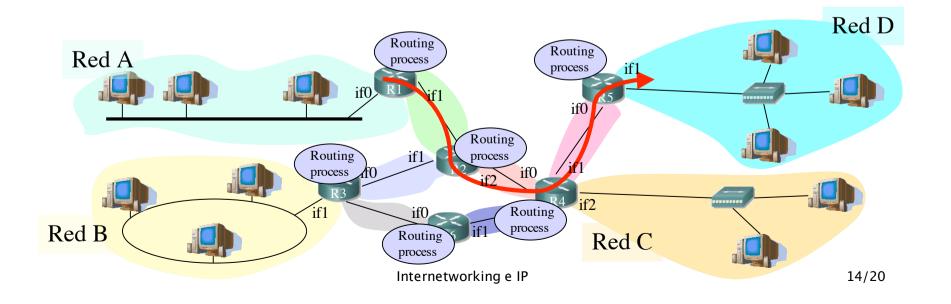
Routing en IP

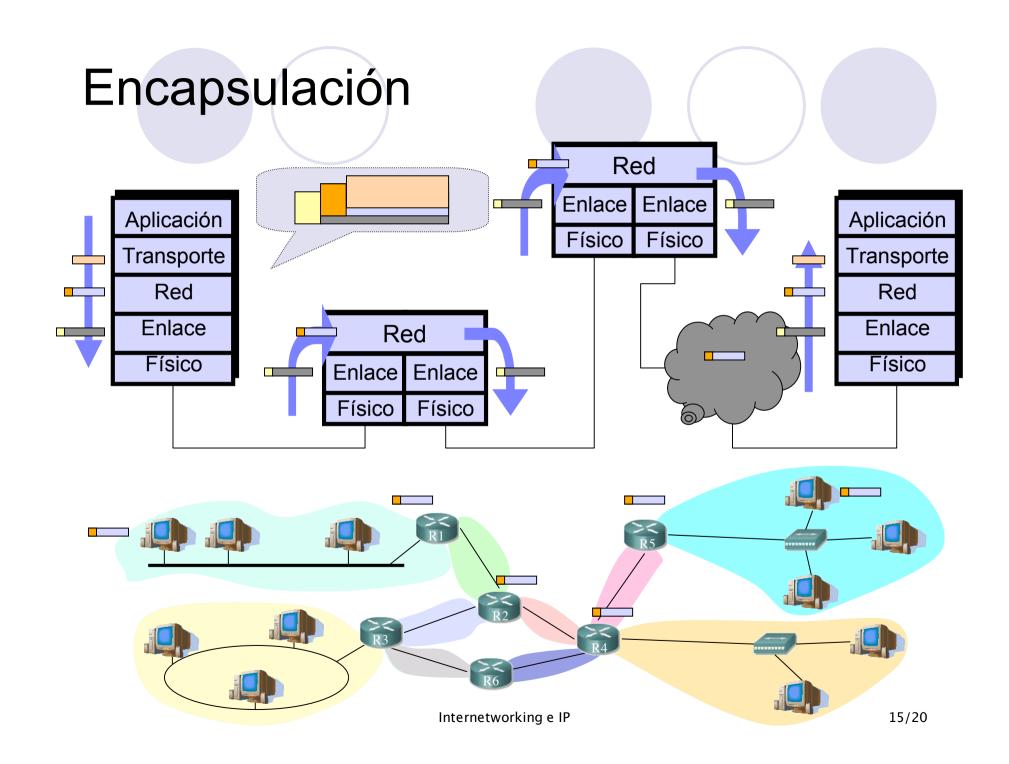
- Llevado a cabo por un **proceso** que se ejecuta en cada router (cálculo distribuido) (...)
- Resultado: una "tabla de rutas" en cada router (...)


Destino	Next-hop
Red A	IP de if1 de R1
Red B	IP de if0 de R3
Red C	IP de if0 de R4
Red D	IP de if0 de R4

Tablas de rutas

- Si tuvieran una ruta para cada host posible:
 - 2³² entradas -> ¡¡¡ 4 mil millones !!!
- Si tuvieran una por cada host que hay en Internet
 - Hoy aprox ¡ 250 millones !
- Continen una entrada por cada Red (también llamada a veces subred)
- De hecho hoy en día puede contener menos entradas

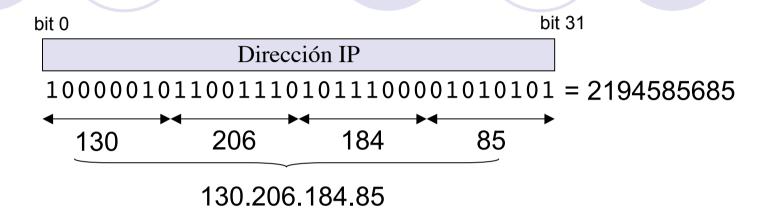

- Y siempre existe la posibilidad de tener una ruta por defecto
 - Enviar por ese camino todo el tráfico para el que no se tiene una ruta mejor
 - Fácil de emplear solo con una estructura en forma de árbol



Forwarding en IP

- Tarea de "reenviar" por el interfaz adecuado el paquete recibido
- En base a la tabla de rutas del router
- La tabla indica cuál es el siguiente router (next-hop) en el camino
- El router tendrá conectividad a nivel 2 con él

Destino	Next-hop
Red A	IP de if1 de R1
Red B	IP de if0 de R3
Red C	IP de if0 de R4
Red D	IP de if0 de R4



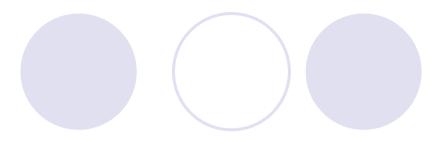
Algunas carácterísticas de IP

- Muy bueno en escalabilidad
 - Millones de nodos
 - Tablas de rutas deben ser "pequeñas"
 - Actualizaciones deben ser "manejables"
- Bueno ante cambios de topología
 - Los routers calculan nuevas rutas
 - Los cambios no afectan a la mayoría
- Pobre rendimiento
 - Utilización de los enlaces no se balancea
 - Las actualizaciones no son muy rápidas
 - Algunos flujos deberían tener garantías de calidad
 - No detecta errores de configuración
 - No se protege ante ataques

Representación de las direcciones

- Números de 32 bits cómodos para computadoras, no para humanos
- Representación "dotted-decimal"

Formato del datagrama IP Longitud Palabras Type of IPv4 vs IPv6 en bytes de 32bits Service del paquete 0 16 31 "Don't Para el Header TOS Longitud Versión Fragment" reensamblado Length 13-bit fragmentation DTM▶ 16-bit identifier offset "More "Time To TTL Protocolo Header checksum Live" Fragments" Dirección IP origen Protocolo del Offset del siguiente Dirección IP destino fragmento nivel [opciones] [Datos]


Temario

- 1.- Introducción
- 2.- Nivel de enlace en LANs

3.- Interconexión de redes IP

- Internetworking e IP
- Direccionamiento clásico
- CIDR
- Comunicación IP en LAN (ARP)
- Fragmentación y reensamblado. ICMP
- 4.- Enrutamiento con IP
- 5.- Nivel de transporte en Internet
- 6.- Nivel de aplicación en Internet
- 7.- Ampliación de temas

Próxima clase

Direccionamiento clásico